Journal of Fluorine Chemistry, 12 (1978) 253-256 © Elsevier Sequoia S.A., Lausanne – Printed in the Netherlands

Received: May 1, 1978

SHORT COMMUNICATION

The Adduct VF ... SbF ...

W. SAWODNY, R. OPFERKUCH, and W. RÖHLKE

Abteilung für Anorganische Chemie der Universität Ulm 7900 Ulm, Oberer Eselsberg (West-Germany)

Whereas NbF₅ and TaF₅ form solid adducts with SbF₅, which contain cis-bridged chains of octahedra, but strongly distorted for the transition metal, so that the coordination number is 4(+2) (distorted tetrahedron), [1,2], VF₅ was predicted to behave similarly [3], but by dissolving SbF₅ in an excess of VF₅ no reaction was observed and the starting materials were recovered unchanged by fractional distillation [4].

We succeeded in obtaining a solid white adduct $\text{VF}_5.\text{SbF}_5$ by two ways:

- 1) Small amounts were formed by fluorinating a 1 : 2 mixture of V and Sb with 85 atm F_2 at 250^OC in a Ni autoclave (reaction time 50 hours)
- 2) By condensing a slight excess (25 mmole) SbF_5 on 16 mmole VF_5 at -196^oC; on heating the liquifying SbF_5 (Fp. +7^oC) reacted with the still solid VF_5 , which was dissolved. After some time the mixture solidified to a paste-like material, which on pumping off the excess of SbF_5 gave a dry white powder.

Elemental analysis showed the product to be the 1 : 1 adduct VF_5 .SbF₅: V: 14% (found 13%), Sb: 33.6% (found 33.1%), F: 52.4% (found 56%).

The material was further characterized by its vibrational spectra. The Raman spectrum of the crystal powder was recorded on a Cary 82 instrument at -196° C, the infrared spectrum of the dry powder or of a halocarbon mull between AgCl windows at various temperatures on a Perkin-Elmer Model 325. The spectra obtained are depicted in Fig. 1.

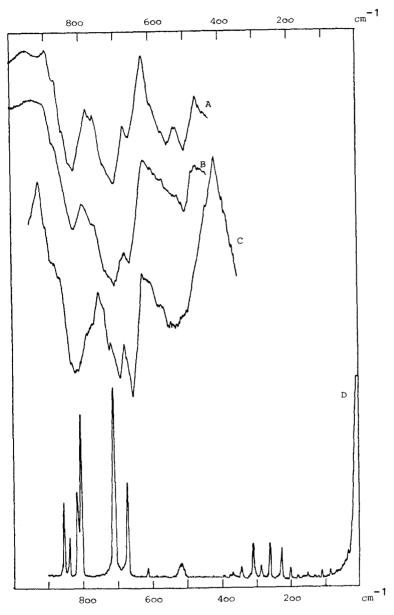


Fig.1. The vibrational spectra of VF_SbF_. Trace A-C: infrared spectra (A: dry powder at -196°C; B: dry powder at + 25°C; C: halocarbon mull at + 25°C); Trace D: Raman spectrum of dry powder at - 196°C.

Assignment			✓ VMF				v	. SDF		ہ۔ : :	M-F-SD	$\delta_{\rm VF}$:			F ⁵ MF and ⁵ SbF			20	
CrF ₅ . 2SbF ₅ [5] liquid	IR	830 s		78о т			695 s	665 s			525 s(b)			280 w						
	RA	835 m		78o s		710 S		665 m		605 m										
VF ₅ .SbF ₅ solid	IR			812 vs(b)		715 w(sh)	691 s	670 m(sh)			504 m									
	RA	852 m】	839 w]	814 m [8o5 s]	712 s		673 m		621 vw	517 vw	342 VW	309 w	281 vw(b)	261 w	228 w	198 vw			107 VW
NbF ₅ .2.13 SbF ₅ liquid	RA [2]	77o s		746 m		711 s	699 s	678 m	667 s]						273 w	241 m			153 w	
TaF ₅ .1.13 SbF ₅ solid	RA [2]	764 vs		743 wm		713 m	695 s	668 s			532 w		305 w	279 sh	272 s	236 ш	197 w	182 w		124 wm

Vibrational spectra of $MF_5 \cdot nSbF_5$ adducts

TABLE 1

Table 1 gives the frequency values, compared with those of $NbF_5.2SbF_5$ [2], $TaF_5.SbF_5$ [2] and $CrF_5.2$ SbF_5 [5]. There is a close resemblence: the two highest frequencies (in the Raman spectrum of $VF_5.SbF_5$ split into two components each, for a MF_4 part of symmetry C_{2v} or lower, 4 frequencies are to be expected from the selection rules) belong to the MF stretching vibrations, those at ca. 710, 695 and 670 $\rm cm^{-1}$ are SbF stretchings, the bands between 500 and 540 cm^{-1} and probably 621 cm^{-1} for $VF_{5}SbF_{5}$ (605 cm⁻¹ for $CrF_{5}.2SbF_{5}$) are due to vibrations within the M-F-Sb bridges and frequencies below 350 cm⁻¹ belong to deformational modes, of which 342 cm^{-1} (only observed for VF₅.SbF₅) may be identified as a δ_{VF} . The increase of the v_{VF} , compared with VF₅ (gas: 608/719/784/ 810 cm⁻¹ [6], solid: 676/687/751/788/833 cm⁻¹ [7]) and VOF₃ (gas: 721/806 cm⁻¹ [8], solid: 741 cm⁻¹ [9]) indicates a considerable amount of positive charge on the V atom. Thus, one may formulate the compound as VF_4^+ SbF₆ but with additional Fbridges from the anions to the cations, very much like (or even identical) to the structure found for NbF5.SbF5 [1]. Although VF5.SbF5 is strongly reactive against organic compounds, there is not such an oxidative power as it was observed for CrF5.2SbF5 [5].

REFERENCES

A.J. Edwards, J. Chem. Soc. A (1970) 820.
P.A.W. Dean and R.J. Gillespie, Can. J. Chem. <u>49</u> (1971) 1736.
H.C. Clark and H.J. Emeléus, J. Chem. Soc. (1957) 2119.
H.C. Clark and H.J. Emeléus, J. Chem. Soc. (1958) 190.
S.D. Brown, T.M. Loehr and G.L. Gard, J. Fluorine Chem. <u>7</u> (1976) 19.
H. Claassen and H. Selig, J. Chem. Phys. <u>44</u> (1966) 4039.
I.R. Beattie, K.M.S. Livingstone, D.J. Reynolds and G.A. Ozin J. Chem. Soc. A (1969) 985.
H. Claassen and H. Selig, J. Chem. Phys. <u>44</u> (1966) 1404.
I.R. Beattie, K.M.S. Livingstone, D.J. Reynolds and G.A. Ozin J. Chem. Soc. A (1970) 1210.

256